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1. Introduction

The rise in macroeconomic volatility experienced during the 2007 financial crisis and
the COVID pandemic put an end to the Great Moderation and increased the interest
in modeling macroeconomic risk. Work by Giglio, Kelly, and Pruitt (2016) and Adrian,
Boyarchenko, and Giannone (2019) popularized the use of quantile regressions in this
context, finding evidence that financial stress leads to asymmetry in output growth.
Many studies applied those methods in a single equation framework focusing on the
predictive power of financial indicators for risk to output growth (e.g., Figueres and Jaro-
ciński (2020), Adams et al. (2021) and Iseringhausen (2021)) and inflation (e.g., Manzan
and Zerom (2013), Manzan (2015) and López-Salido and Loria (2020)). Others proposed
using quantile regressions as part of a structural analysis studying the effects of shocks
on the conditional distribution of output growth (Loria, Matthes, and Zhang 2023) or to
distinguish between shocks to upside, downside and total uncertainty (Forni, Gambetti,
and Sala 2021). Quantile regression methods were also extended to a VAR setting by
White, Kim, and Manganelli (2015), Chavleishvili and Manganelli (2021), Chavleishvili
et al. (2021) and Ruzicka (2021) for forecasting, scenario analysis, macroprudential risk
management and quantile impulse responses.

The use of linear quantile regression models is primarily motivated by an appeal to
their robustness as approximations to conditional quantiles and distributions. Economic
theory can justify a wide variety of VAR processes for modeling conditional distribu-
tions1, but all of them requires committing to a particular functional form. Since linear
quantile regressions provide a weighted least square optimal linear approximation to
the true conditional quantiles (Angrist, Chernozhukov, and Fernández-Val 2006), they
have been employed to produce forecasts or insights regarding macroeconomic risks in
ways which are hopefully robust to the unknown form of the underlying data generating
process.

In such a context, we can understand the popularity of quantile regression methods
for studying and forecastingmacroeconomic risk. Several researchers have recently pro-
posed a quantile VAR (QVAR) model ( White, Kim, and Manganelli (2015), Chavleishvili

1Occasionally binding collateral constraints (Aiyagari and Gertler 1999) or a kinked Phillips curve
(Benigno and Eggertsson 2023) suggests using a threshold VAR. The model in Acemoglu and Scott
(1997) imply a smooth transition process for output where the transition function emerges from firm
heterogeneity as only some firms opt to invest at a given point in time. Real options arguments (Bernanke
(1983) andMcDonald and Siegel (1986)) and frictions to the supply of credit (e.g., (Adrian and Boyarchenko
2012) and (Brunnermeier and Sannikov 2014)) can motivate the use of volatility-in-means effects (e.g.,
Elder and Serletis (2010)).
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and Manganelli (2021), Ruzicka (2021) and Montes-Rojas (2021)), but its forecasting
performance has yet to be assessed.

The first contribution of this paper to provide an extensive evaluation of the predic-
tive performance of the QVARmodel. Other papers explored a similar comparison in
a single equation setting between quantile regression models and AR-GARCHmodels
(e.g., Brownlees and Souza (2021), Iseringhausen (2021) and Kipriyanov (2022)). Other
compared quantile regression models with more sophisticated parametric VAR alter-
natives (e.g., Carriero, Clark, and Marcellino (2021) and Caldara et al. (2021)), but the
QVAR model has yet to be compared to parametric alternatives. Throughout this paper,
we target conditional densities with a focus on one or both tails of conditional distribu-
tions, as well as the 5th and 95th quantiles. The comparison features 112 US monthly
macroeconomic variables and an out-of-sample period of over 40 years with forecasting
horizons of between a month and a year.

This is in stark contrastwith the typical forecasting evaluation in this literaturewhich
focuses on a few targets. This exercise is built around bivariate VAR models where the
target variable is paired with the National Financial Conditions Index (NFCI). This is
perhaps the most interesting comparison as it is the most commonly used predictor
in the growth-at-risk literature following Adrian, Boyarchenko, and Giannone (2019).
We also know credit shocks to be important drivers of macroeconomic fluctuations
for a large number of variables (Boivin, Giannoni, and Stevanović 2020) so financial
stress may be relevant to many of our target variables, insofar as it captures this type
of shock. We compare QVAR on this basis with three parametric alternatives. The first
alternative is a Gaussian VAR (VAR-N) which allows us to evaluate when and how much
gain there is to moving beyond iid disturbances. We also include a VAR-GARCHmodel
as in Normandin and Phaneuf (2004), Bouakez and Normandin (2010) or Bouakez, Chihi,
and Normandin (2014) and a VAR-SV similar to those used by Cogley and Sargent (2005),
Primiceri (2005) or Chan and Eisenstat (2018) to offer two common and relatively simple
ways we can introduce parametric changes in volatility. However, unlike those authors,
we do not pursue time-varying parameters in an effort to limit our deviation from the
iid setting to changes in volatility.

We find that QVAR can statistically significantly improve over a VAR-N for forecast-
ing density and quantiles in the tails of distributions in close to half of the variables
with improvements in predictive capacity reaching between 10 and 30%. These are
particularly important for labor market variables across all horizons considered and
for interest and exchange rate at shorter horizons. QVAR also offers improvements over
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a VAR-GARCH in fewer cases concentrated in those same groups of variables. These
results appear acyclic and relatively stable over time suggesting that time variation
in conditional volatility and in upside and downside macroeconomic risk is generally
worthwhile. Finally, QVAR almost never does statistically significantly worse than the
parametric alternatives: it is therefore a robust way to model macroeconomic risk.

The second contribution of this paper is to extend the analysis to a data-rich envi-
ronment by augmenting QVAR models with latent factors estimated from our set of
112 target variables. Applications featuring principal component estimates (PCA) (e.g.,
Manzan (2015) and Goulet Coulombe et al. (2022)) and the recently introduced iterative
quantile regression (IQR) estimates of quantile factors (Chen, Dolado, and Gonzalo
2021) have been considered in the past, but all of them involve direct forecastingmodels
in a univariate setting. In contrast, QFAVARmodels the dynamic of latent factors and
targets variables jointly.

We find that QFAVAR and QVARmodels tend to equally well at forecasting macroeco-
nomic risks across all variable categories. PCA and IQR factors may carry information
which significantly overlaps much with the NFCI. However, QFAVAR models do provide
statistically significant improvements in about 13% of cases, most of them in the labor
market across all horizons. We therefore conclude from these and the previous results
that QVAR and QFAVARmodels are appropriate tools for modeling macroeconomic risk.

The paper is organized as follows. Section 2 introduces the QVAR model, details
some of its properties and explains how to use it for forecasting. Section 3 details the
forecasting experiments, the parametric models used and the performance metrics we
consider. In section 4, we compare results for the QVAR and parametric alternatives
while in section 5, we compare results for the QVAR and QFAVAR models. Section 6
concludes.

2. Quantile VARModels

The QVARmodel considered in this paper has been studied for scenario analysis and
structural analysis by Chavleishvili and Manganelli (2021), Montes-Rojas (2021) and
Ruzicka (2021). For a K × 1 vector yt of time series, the conditional quantile τk ∈ [0, 1]
of the k-th variable takes the form

Qτk

(
yk,t |x̃

(k)
t

)
=
∑
i≤k

a0,k,i(τk) yi,t +
K∑
i=1

p∑
j =1

aj ,k,i(τk) yi,t–j + ϵk(τk)(1)
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where x̃(k)t contains the regressors for this equation. It is well known in this literature
that quantile regressions admit a (restricted) randomcoefficient representationwhereby
data can be simulated by uniformly sampling parameters over a grid of quantiles one
equation at a time, one period at a time. This leads to

yt =
∑
i≤k

a0,k,i(uk,t) yi,t +
K∑
i=1

p∑
j =1

aj ,k,i(uk,t) yi,t–j + ϵk(uk,t)

⇔ yt = A0(ut) yt +
p∑
j =1

Aj (ut) yt–j + ϵ(ut)(2)

where ut ∼ U[0, 1]K, A0(ut) is a lower triangular matrix with a null diagonal. Contem-
porary terms are always included to ensure coefficients across equations do not depend
on multiple uk,t ’s, but are independent to obviate the need for a notion of multivariate
quantiles2 and the triangular structure simplifies estimation.

Before turning to estimation and forecasting, we consider a few properties of QVAR
processes. While it might be not be obvious, equation (1) implies the support of yt
must be bounded because, otherwise, quantile crossing would occur even in large
samples3. The condition for ensuring the process is ergodic, as well as weakly and
strongly stationary is easier to interpret by looking at the model with one variable and
one lag. In this case, the condition would be E

(
a1(ut)2

)
< 1 which allows for unit and

explosive roots for some subsets of conditional quantiles. Finally, it should be noted
that (2) admits the following SVAR representation

yt = Ā0 yt +
p∑
j =1

Āj yt–j + ϵ̄t(3)

where ϵ̄t :=
(
A0(ut) – Ā0(ut)

)
yt +

∑ p
j =1

(
Aj (ut) – Āj

)
yt–j + ϵt and Āj := E

(
Aj (ut)

)
under technical conditions spelled out in Proposition 1.5 of Ruzicka (2021). This es-
tablishes that VAR and QVAR processes impose the same linear functional form for
conditional expectations even as QVAR would also capture such things as conditional

2The interested reader can also find a technical explanation in the Theorem 1 of Chavleishvili and
Manganelli (2021).

3Quantile regression models capture changes in conditional distributions by allowing slopes to vary
with regressors across quantiles. For a single regressor, this means conditional quantiles are drawing
lines which aren’t parallel and must cross in the support of yt, unless it is bounded. See discussions in
Koenker and Xiao (2006) and Hallin and Werker (2006) or Ruzicka (2021) for the multivariate case.
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heteroskedasticity.
An interesting consequence of this relation is that when a QVAR admits a VAR

representation, results in Lütkepohl (2005) concerning linear transformations of the
form F yt should apply. In particular, if a large set of variables follow a QVAR(p) process
(and thus a VAR(p) process), then a subset of it will generally follow a VARMA( p̃,q̃)
process (with possibly some heteroskedasticity or other higher order dependence). We
would therefore expect that QVAR and VAR models offer similar mean forecasts.

2.1. Estimation and Forecasting

Model parameters can be estimated by linear quantile regression (Koenker and Bassett
1978) one equation at a time for a grid of quantiles. Let β(k)(τk) be all parameters for

regression k, including the intercept ϵk(τk), and x
(k)
t =

(
1, x̃(k)

′
t

)′
be the corresponding

vector of regressors. Then the estimator is given by

β̂
(k)(τk) := argmin

β∈R(k+K p)

T∑
t= p+1

ρτk

(
yk,t – β

′x(k)t
)

(4)

where ρτk(u) := u(τk – I{u < τk}) is the quantile loss function. Under some technical
conditions which guarantees among other things that the process is strongly stationary
and ergodic, Ruzicka (2021) has established the asymptotic normality of this estimator4.
This estimator further enjoys a similar property to ordinary least squares under mis-
specification as it offers the optimal linear approximation to conditional quantiles in a
weighted least square sense (Angrist, Chernozhukov, and Fernández-Val 2006). This ’ro-
bustness’ property is one of the primary motivations behind its use for macroeconomic
risk modeling.

In this paper, we produce all forecasts for QVARmodels by simulating future sample
paths from iteratively applying the randomcoefficient representation (2) using estimates
obtained from (4). Specifically, at each point in time the parameters are selected by
choosing the point on the quantile grid that falls closest to a uniform random draw
uk,t for each equation k. Iterating this forward allows us to draw a sample path for
yt+1, . . . , yt+12 and repeating this a large number of times allows us to compute a
variety of statistics at a each point in time (quantile forecasts, mean forecasts, etc.).

4Using weights based on its asymptotic covariance matrix, β̂(k)(τk) viewed as a process over τk ∈ [0, 1]
converges to a K p + k-dimensional standard Brownian Bridge. The interested reader can also find some
results for the quantile regression estimator under unit roots and cointegration in Koenker and Xiao
(2004), Xiao (2009) or Cho, Kim, and Shin (2015).
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This algorithm contrasts with the approach introduced by Adrian, Boyarchenko, and
Giannone (2019) in a univariate context whereby the skewed t distribution of Azzalini
and Capitanio (2003) is fitted to closely match a handful of conditional quantile fore-
casts produced using quantile regression estimates. On the other hand, it is closer in
spirit to the method used by Chavleishvili and Manganelli (2021) for stress testing and
Chavleishvili et al. (2021) for risk management in a macroprudential context as we can
condition forecasts on scenarios by simply imposing predetermined sequences of quan-
tiles. It also mirrors Ruzicka (2021)’s approach for obtaining quantile impulse responses.
Considering this is how the QVAR model was introduced, we limit our attention to this
approach.

An important detail concerns the choice of a grid of quantiles. We opted to use a
relatively fine grid of 100 equally spaced quantiles, but note that some of those quantiles
may not be well estimated. Chernozhukov, Fernández-Val, and Kaji (2017) suggested
using extreme value methods for quantiles beyond τT/(K p + K) ≤ 15 where K p + K is
the number of parameters in the last equation. For example, a bivariate QVAR with a
single lag estimated on 400 observations gives us the interval [0.15, 0.85] whereas adding
a second lag reduces it to [0.225, 0.775]. Parsimony may thus be even more important
when dealing with quantiles in the tails. For this reason, we follow Chavleishvili and
Manganelli (2021) and Chavleishvili et al. (2021) and use a QVARwith one lag throughout
the paper.

3. Forecasting Experiment

In this section, we conduct an out-of-sample forecasting experiment in which we target
many monthly US variables obtained from the FRED-MD data set (McCracken and
Ng 2016) spanning the period between January 1959 to June 2022. We also use the
National Financial Conditions Index (NFCI) observed from January 1971 to June 2022 as a
predictor inmanymodels.Hence, to obtain a balancedpanel of forecasting performance
metrics, we selected all target variables from FRED-MDwhich started at least as early as
the NFCI and did not feature any missing values in the July 2022 version of the data set.
This leaves us with a subset of 112 target variable. To obtain many cycles of recessions
and expansion, we set the start of the out-of-sample period to January of 1980 which
gives 6 NBER recessions and a total of 510 periods for model comparison.

All target variables are transformed to induce stationarity5 and we target the re-
5We follow McCracken and Ng (2016), except that we do not take second differences on interest rates,
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sulting values in h = 1, . . . , 12 months rather than h period averages as forecasts are
produced iteratively through simulations for all models6. Finally, given our focus on
forecasting tails, a difficult balance must be struck between allowing a large sample
size for estimation and allowing the model to adapt to structural changes. We opted for
a rolling window of 400 observations, allowing the window to initially expand to this
size to include the recessions from the early 1980s in the analysis.

3.1. Models

The forecasting experiment includes four bivariate models with the targeted variable
orderedfirst, followed by theNFCI. Thesemodels are theQVAR, aswell as three paramet-
ric alternatives: a VAR-N, a VAR-GARCH and VAR-SV. The VAR-N is a useful benchmark
insofar as it is not obvious modeling moments beyond the mean is meaningful for
macroeconomic data (Plagborg-Moller et al. 2020). The VAR-GARCH and VAR-SV mod-
els are interesting as common tools in the structural VAR literature which relaxes the
iid assumption of the VAR-N by allowing conditional volatility to change over time. We
further consider four additional variations on the baseline QVARmodel by introduc-
ing latent factor and latent quantile factor estimates as regressors, a set of hitherto
unexplored extensions we call a factor augmented QVAR or QFAVAR.

VAR-N. This model takes the form

yt+1 = ν + A1 yt + ut+1, ut+1 ∼ N(0,Σ).(5)

We estimate mean parameters ν and A1 by ordinary least squares. The covariance
matrix of innovations is estimated as Σ̂ =

∑T
t=2 ûtû

′
t/(T – K p – 2) ût where K = 2, p = 1

and ût are residuals.

VAR-GARCH. We follow the structural VAR literature (e.g., Normandin and Phaneuf
(2004); Bouakez and Normandin (2010); Bouakez, Chihi, and Normandin (2014)) and
create a multivariate GARCH process by imposing that each ’structural’ shock follows its
own GARCH(1,1) process. Hence, we replace the normal for the vector of innovations

unemployment rates, monetary aggregates and prices as in Bernanke, Boivin, and Eliasz (2005). All
transformations are given in Table A3 Appendix.

6Results in Goulet Coulombe et al. (2021) suggests averaging single period forecasts ex post is generally
preferable to directly targeting averages when point forecasts are of primary interests, but this question
lies beyond the scope of this paper.
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with

ut+1 = Dϵt+1(6)

ϵk,t+1 =
√
hk,t+1zk,t+1, zk,t+1 ∼ N(0, 1)

hk,t+1 = (1 – αk – βk) + αkϵ
2
k,t + βkhk,t.

where D is lower triangular to use the same restriction as in the QVARmodel. We use
the same parameter estimates for ν and A1 and Σ as we do for the Gaussian VAR case.
D̂ is obtained from a Cholesky factorization of Σ̂. Series of ’structural residuals’ ϵ̂k,t
are then obtained on which individual GARCH(1,1) processes are fitted by maximum
likelihood.

(Bayesian) VAR-SV. We use one of the restrictedmodels featured in Chan and Eisenstat
(2018) which essentially replaces individual GARCH processes featured in the VAR-
GARCH shown above by (random walk) stochastic volatility processes.

B0 yt+1 = µ + B1 yt + ϵt+1(7)

ϵk,t+1 = exp
(
hk,t+1/2

)
zk,t+1, zk,t+1 ∼ N(0, 1)

hk,t+1 = hk,t + σkζk,t+1, ζk,t+1 ∼ N(0, 1)

We impose recursive short-run restrictions as with the QVAR and VAR-GARCHmodels
such that B0 is set to a lower triangular matrix with a unit diagonal. It is a common
choice (e.g., Cogley and Sargent (2005) and Primiceri (2005)). The model is estimated
using Bayesian methods with the following priors:

θ :=
(
vec

(
(µ,B1)′

)′ , b0,2,1)′ ∼ N(bθ,Vθ), h0 ∼ N(bh,Vh) and σk ∼ IG(νk, Sk).

We set bθ and Vθ as a Minnesota-type prior with common hyperparameter values
centered on a randomwalk, except for the growth rates of consumption, exchange rates
and stock market indexes which we center on white noise. We center the value for b0,2,1
at 0 with a relatively large variance of 10 and likewise for the initial log variance (bh = 0
and Vh = 10) following Chan and Eisenstat (2018). We use the shape νk = 5 and scale
Sk = 0.1(νk – 1) as Chan and Eisenstat (2018) reflecting a relatively diffuse prior centered
on a small value (here, 0.1).

Their Gibb Sampling algorithm has two particular features. First of all, it jointly
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samples mean parameters θ for each equation whereas other algorithms would sample
free elements in B0 separately. Second of all, while it applies the common auxiliary
mixture sampler proposed by Kim, Shephard, and Chib (1998) which allows using
methods for linearGaussian state-spacemodels, it samples the sequence of log variances
(ht)Tt=1 in a single step for each equation using the precision sampler of Chan and Hsiao
(2014). These features make the algorithm fairly efficient.

QFAVAR. As a means of exploring the value of a data-rich environment for macroeco-
nomic forecasting, we introduce latent factor estimates as part of the vector of variables
yt in (2). This is similar in spirit to the FAVAR model of Boivin and Ng (2005), although
we do not impose restrictions that would strictly justify treating the target variable and
NFCI as ’observed’ factors. In all cases, latent factors are recursively estimated using
the in-sample data window. We collect our 112 variables into a matrix X and let variable
i obey

xi,t = λ′i f t + νi,t(8)

where f t is a r × 1 vector of factors and λi is the corresponding vector of loadings. Fol-
lowing common practice since Stock and Watson (2002a,b), we obtain factor estimates
f̂ t by principal component. We set r = 1 factor out of concern for parsimony so our
vector of time series becomes yt = ( y1,t, f̂ t,NFCIt)′. A natural alternative would be to
consider doing the same thing using the quantile latent factors recently introduced by
Chen, Dolado, and Gonzalo (2021). In this case, we have

Q
(
xi,t | f t(τ)

)
= λi(τ)

′ f t(τ) + νi,t(τ)(9)

with f t(τ) being r(τ)× 1. We obtain estimates f̃ t(τ) for the 5th and 95th quantiles using
the IQR algorithm (Chen, Dolado, andGonzalo 2021). Again,we set r(τ) = 1 for parsimony
and use yt = ( y1,t, f̃ t(0.05), f̃ t(0.95),NFCIt)′.

3.2. Forecasting Evaluation

We are primarily interested in the relative ability of each model to produce forecasts
for the tails of the distribution, but also consider evaluating point forecasts. For model
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m and variable v, define the h period ahead mean and quantile forecasts as

ŷt+h,v,m := Êm
(
yt+h,v|Ft

)
q̂t+h,v,m(τ) := Q̂τ,m

(
yt+h,v|Ft

)
.

We evaluate mean and quantile forecasts using square and quantile scores, respectively

L2
(
ŷt+h,v,m, yt+h,v

)
:=

(
yt+h,v,m – yt+h,v

)2
(10)

QSτ
(
q̂t+h,v,m(τ), yt+h,v

)
:= ρτ

(
q̂t+h,v,m(τ) – yt+h,v

)
.(11)

In both cases, their use is motivated by the well-known fact that the expected values of
those loss functions are minimized if the ’true’ conditional expectation and quantiles
are used. We follow Carriero, Clark, and Marcellino (2020) and Carriero, Clark, and
Marcellino (2022) in our evaluation of density forecasts and adopt the quantile weighted
continuous ranked probability score (CRPS) introduced by Gneiting and Ranjan (2011).
For a grid of N quantiles, this score is defined as

qwCRPS
(
q̂t+h,v,m,ν, yt+h,v

)
=

2
N – 1

N∑
j =1

ν(τj )QSτj
(
q̂t+h,v,m(τj ), yt+h,v

)
(12)

where ν :=
(
ν(τj )

)N
j =1

is a vector of weights and q̂t+h,v,m :=
(
q̂t+h,v,m(τj )

)N
j =1

stacks

quantile forecasts into a vector. Gneiting and Ranjan (2011) proposed using ν(τj ) = τ2j ,
ν(τj ) = (1 – τj )2 and ν(τj ) = (2τj – 1)2 to put more weight on the right tail, left tail or
both tails jointly. This scoring rule is proper meaning that it would be minimized in
expectation by the true conditional density (Gneiting and Raftery 2007). Note that all
performance metrics are negatively oriented so that we seek to minimize them.

4. Discussion of QVAR Results

To build intuition about how the QVAR model performs relative to the parametric
alternatives, we begin our discussion by focusing on a handful of target variables: the
growth rate of output as measured by industrial production, the unemployment rate,
the CPI inflation rate and the federal funds rate. The interest of the first three variables
lies in them being common targets in this literature7. The federal funds rate happens

7E.g., Giglio, Kelly, and Pruitt (2016), Adrian, Boyarchenko, and Giannone (2021) and Plagborg-Moller
et al. (2020) all looked at risk to different measures of output growth, while Kiley (2022) studied risk to
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to be an example of a variable for which QVAR forecasts risk relatively well and is of
independent interest as a key indicator of the stance of monetary policy.

Table 1 displays the performance of QVAR, VAR-GARCH and VAR-SV relative to the
VAR-N benchmark for each of those series at aa horizon of one month over the entire
out-of-sample period. Specifically, let l (m,h)t,v be the loss of modelm at horizon h, time t
and variable v, the table shows

R̄(m,h)T,v =
∑T
t=1 l

(m,h)
t,v /T∑T

t=1 l
(VAR–N,h)
t,v /T

(13)

where T is the size of the out-of-sample period. Significance for the difference in loss
between models using a Diebold and Mariano (1995) test with HAC standard errors
are also indicated. Focusing on the first column, we can see that all models show
improvements over the VAR-N benchmark for output growth, inflation and the federal
funds rate. QVAR and VAR-GARCH showmarginally significant gains of 6 and 9% for
forecasting the tail density of output growth, respectively. Tables A1 and A2 in the
Appendix show the small edge QVAR enjoys for output growth persists and becomes
significant at 1% at horizons of 3 and 6 months. But the largest improvements in Table
1 occur for the federal funds rate with all three models showing gains over 30%, all
statistically significant at 1%.

the unemployment rate and López-Salido and Loria (2020) focused on inflation risk.
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TABLE 1. Selected Series (All Periods at 1 month ahead)

CRPS (Tails) CRPS (Left) CRPS (Right) QS05 QS95 MSE

QVAR

Output growth 0.942* 0.994 0.926** 1.007 0.844* 0.904
Unemployment rate 1.011 1.046 0.975 1.13 0.963 1.016
Inflation rate 0.98 0.999 0.972* 1.007 0.958 1.007
Fed. funds rate 0.633*** 0.734*** 0.658*** 0.664*** 0.591*** 0.991

VAR-GARCH

Output growth 0.916* 1.002 0.905 0.954 0.725 1.003
Unemployment rate 1.016 1.005 1.019 0.949 1.026 0.992
Inflation rate 0.958*** 0.984 0.972*** 0.914 0.917 1.005
Fed. funds rate 0.635*** 0.739*** 0.691*** 0.625*** 0.521*** 1.001

VAR-SV

Output growth 0.931 1.011 0.896* 0.986 0.738 0.889
Unemployment rate 1.003 0.989 1.014 0.972 1.03 1.018
Inflation rate 0.957*** 0.994 0.953*** 0.952 0.891* 1.008
Fed. funds rate 0.603*** 0.717*** 0.637*** 0.632*** 0.514*** 0.987

The ratios of mean predictive metric indicate the model beats the VAR-N benchmark when below one.
Statistical significance at the 10% (*), 5% (**) and 1% (***) levels for the Diebold and Mariano (1995) test
using Newey and West (1987) standard errors are also shown. QS refers to the quantile score and CRPS to
the indicated quantile weighted CRPS.

Tables A1 andA2 in theAppendix show these improvements diminish at the 3months
market to a little over 20%while remaining statistically significant, but almost disappear
at the 6 months mark with only the QVAR showing marginally statistically significant
improvements a little over 10%. Single tail weighted CRPS and quantile score metrics
show equally large and statistically significant gains in both tails for the federal funds
rate.

A natural question to ask is whether this a cyclical aspect to these gains. We may
believe most of the gains are concentrated during recessions or at least around them.
Figures 1 and 2 compares the QVAR and VAR-N forecasts for the mean, the 5th and the
95th quantile for the federal funds rate and growth rate of output at the 1 month horizon
for periods of 24 months surrounding each of the 6 NBER recessions we cover.
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FIGURE 1. Recessions (Federal funds rate, 1 month ahead)

Ratios show the percentage different between QVAR and VAR-N with negative indicating improvements.
NBER recessions are shaded. SE: squared error.
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FIGURE 2. Recessions (Output growth, 1 month ahead)

Ratios show the percentage different between QVAR and VAR-N with negative indicating improvements.
NBER recessions are shaded. SE: squared error.
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Each figure also reports performance ratios as in equation (13) for all of the out-of-
sample period, as well as for each of the 24 months segments. They have been centered
on zero so values below zero indicate theQVARoutperforms theVAR-N. There’s a general
pattern of QVAR doing better than VAR-N across all metrics with minor exceptions
for the federal funds rate. It also appears most of the advantage isn’t located during
recessions, but after recessions where QVAR provides much tighter intervals. Given
that VAR-GARCH and VAR-SV perform similarly per Table 1, it is possible that allowing
for variation in the secondmoment is what matters here. Results for output growth also
shows QVAR does not perform better than VAR-N during recessions, but sometimes
get an advantage during the recovery. This has been the case in most metrics since the
2001 recession. Figures A1 through A6 in the Appendix show results for the other two
variables and a horizon of 6 months. It’s visible that QVAR’s advantage over VAR-N is
mostly about doing better at capturing time varying risks outside of recession periods.

FIGURE 3. Recursive average ratios to VAR-N (Tails weighted CRPS, 1 month ahead)

The figure features the median of averages across variables in each group. Groups: (1) Output and income
(16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption, orders and
inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19 variables),
(7) Prices (20 variables) and (8) Stock market (4 variables).
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To see how well this impression that QVAR may be beneficial for modeling risks
outside of recession generalize, we now consider computing performance ratios recur-
sively (that is, R̄(m,h)T∗,v for T∗ = 1, ...,T) for each of our 112 variables. Figure 3 displays the

time series of median values of R̄(m,h)T∗,v for each of the 8 categories of variables included
in FRED-MD8. Values below unity indicate a given model outperformed VAR-N. We
see that all three models perform remarkably similarly and do especially well for the
labor market (group 2), the interest and exchange rates (group 6) and the stock market
(group 8) at a horizon of 1 month. And, again, relative performance isn’t consistently
improved during recessions, even for income and output (group 1), although it is true
for the 2008 recession. This is unsurprising since this followed from financial crisis and
we use the NFCI as in Adrian, Boyarchenko, and Giannone (2019). Figures A7 and A8
in the Appendix show the results for horizons of 3 and 6 months. They reinforce the
same point that QVAR doesn’t get most of its edge from recessions. It also illustrates
that model performance is relatively stable over time9.

FIGURE 4. 1 Month ahead quantile weighted CRPS ratios (QVAR to VAR-N)

Groups: (1) Output and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables),
(4) Consumption, orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and
exchange rate (19 variables), (7) Prices (20 variables) and (8) Stock market (4 variables).

8There are 112 series of recursive ratios, R̄(m,h)T∗,v , for each pair of models and horizon. We opted to
visualize the median to avoid the handful of cases where VAR-SV performs poorly such as on oil prices.

9VAR-GARCH and VAR-SV do provide an exception at 3 and 6 months where they clearly gained most
of their grounds during the COVID recession for labor market variables.
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Now that we have a sense of how risk forecasting performances evolve over time,
we return to comparisons involving all of the out-of-sample period. Figure 4 displays
group-wise distributions of ratios of mean right and left weighted CRPS for the QVAR
relative to the VAR-N benchmark10. As before, values below unity mean that the QVAR
model outperforms the VAR-N benchmark. The previous figure focused on how on
the median of each of those distributions evolved. Here we’re interested on seeing the
magnitude and frequencies of improvements.

We can see that on the right and left tails at the one month horizon, QVAR provides
improvement in excess of 10% for 25% of interest and exchange rate variables (group
6), 15% of money and credit variables (group 5) and around 10% of the labor market
(group 2) variables. Some of the gains for money and credit, as well as labor market
variables are very substantial, exceeding 30% improvements. Figures A9 and A10 in
the Appendix show gains for increasingly fewer cases at the 3 and 6 months horizons,
respectively. That being said, the handful of large improvements for labor market and
money and credit variables appear to subsist at those medium term horizons. Figures
A11 through A13 in the Appendix show the picture is robust to using quantile scores
rather than quantile weighted CRPS as performance metrics. In other words, gains to
modeling changes in tail risk persist for longer when looking at those macroeconomic
variables rather than financial variables like interest and exchange rates where the
gains are shorter-lived.

While we see QVAR can substantially outperform VAR-N and does so in many cases,
we have yet to determine whether the differences in performance are statistically
significant.Weproceedbyusing aDiebold andMariano (1995) test to categorize variables
in each of the 8 groups featured in FRED-MD. We say that QVAR wins over a given
benchmark model if it has a lower average loss and the difference is significant at 5%.
Likewise, we say that QVAR loses if it has a higher average loss and the difference is
significant at 5%. In other cases, models are classified as equally good. We categorize
all variables in this manner for forecasts at horizons of 1 to 12 months.

Figure 5 presents these group-wise count for the tails weighted CRPS metric. The
upper left panel shows that QVAR has a statistically significantly improves over the
VAR-N benchmark for nearly 60 out of 112 variables at shorter horizons meaning it’s
often worth going beyond iid shocks for tail density forecasting. QVAR beats the VAR-N
for interest and exchange rates (group 6), as well as stock market (group 8) variables

10Specifically, it is the empirical CDF of R̄(QVAR,1)T,v from equation (13) for each group of variables in
FRED-MD.
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FIGURE 5. QVAR and benchmark model comparison (Tails weighted CRPS)

Winning or losing requires 5% significance in the Diebold and Mariano (1995) test. Groups: (1) Output
and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption,
orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19
variables), (7) Prices (20 variables) and (8) Stock market (4 variables).

at short horizons. QVAR performs better than both VAR-N and VAR-GARCH for about
1/3 of labor market (group 2) variables starting at about 3 months ahead going forward.
QVAR rarely loses to parametric alternatives, except for prices (group 7).

QVAR beats the other two parametric alternatives in fewer cases. Part of that fall
comes from interest and exchange rates (group 6), suggesting QVAR improves over
VAR-N in this category by enabling for changes in volatility like VAR-GARCH and VAR-SV.
Another part of the fall vis-à-vis VAR-SV, but not VAR-GARCH is the labor market (group
2). The variables related to unemployment and hours worked in that group are very
persistent, The Minnesota prior used by the VAR-SV therefore suggest QVAR improves
over the OLS estimates used by VAR-N and VAR-GARCH on persistent data. This is visible
in Figure A14 of the Appendix which displays the comparisons for square loss.

In summary, QVAR improves upon VAR-N in about half of all variables and rarely
doesmore poorly than any of the parametric alternatives. QVAR appears to be especially
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well suited to model the labor market, as well as interest and exchange rates. The gains
do not appear tied to recessions, seem stable over time and reaching between 10 and
30% in many cases. Moreover, large gains are statistically significant. Finally, QVAR
almost never does statistically significantly worse than the parametric alternatives: it is
therefore a robust way to model macroeconomic risk.

5. Discussion of QFAVAR Results

In this section, we consider the usefulness of extending the QVAR model to a data-rich
environment by alternatively adding PCA and IQR latent factor estimates to our bivariate
QVAR.

FIGURE 6. Recursive average ratios to QVAR (Tails weighted CRPS, 1 month ahead)

The figure features the median of averages across variables in each group. Groups: (1) Output and income
(16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption, orders and
inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19 variables),
(7) Prices (20 variables) and (8) Stock market (4 variables).

Figure 6 illustrates the evolution over time of the predictive performance of QFAVAR
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relative to QVAR for tail densities. As in Figure 3, we recursively compute ratios of
average tail weighted CRPS according to equation (13) for all variables and display the
group-wise median. Values below unity mean that the QFAVAR model outperforms
the QVAR model. QFAVAR models perform similarly to QVAR models for tail density
forecasting. This feature is stable over time across all groups. Figure A17 in the Appendix
illustrates the same point at the 6 months horizon.

FIGURE 7. QFAVAR and QVAR comparison (Tails weighted CRPS)

Winning or losing requires 5% significance in the Diebold and Mariano (1995) test. Groups: (1) Output
and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption,
orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19
variables), (7) Prices (20 variables) and (8) Stock market (4 variables).

As one might suspect from those observations, once we turn to formal tests, the
differences in scores betweenQVAR andQFAVARmodels aren’t statistically significant in
most cases. Figure 7 displays those results for formal tests over the entire out-of-sample
period for tail weight CRPS. As in the previous section, we say that QVARwins for a given
variable if its average score is lower than for QFAVAR and the difference is statistically
significant at 5% using a Diebold and Mariano (1995) test. A similar definition applies
to cases where QVAR loses (QFAVAR wins) and, otherwise, we deem that both models
perform equally well.

One of the patterns which holds across all QFAVAR models is that adding factors
pays off more often at longer horizons. Another one is that QVAR and QFAVARmodels
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perform equally well at density forecasting for about 100 of the 112 target variables in
our sample. Given that the NFCI is estimated using a combination of macroeconomic
and financial variables, it is possible that it shares some information with the PCA and
IQR factors we extracted. Adding PCA or IQR factors improves tail density forecasts for
some of the labor market (group 2) variables even though QVAR already performed well
in this category relative to parametric alternatives. IQR helps with output and income
(group 1) in a handful of cases in a way that PCA does not. Figures A20 and A18 in the
Appendix display the same information for square loss and right and left weighted CRPS
metrics, respectively. They show the improvements made from using PCA and IQR
factors in the labor market is related to improvements in forecasting conditional means.
However, for income and output, gains from including IQR factors show up in right
and left weighted CRPS metrics, but not in the square loss metric. This isn’t particularly
surprising given that we extracted IQR factors in the tails.

6. Conclusion

In this paper, we evaluated the performance of the QVARmodel for forecasting macroe-
conomic risk. To this end, we performed a large out-of-sample forecasting experiment
on US monthly variables using VAR-N, VAR-GARCH and VAR-SV models as paramet-
ric benchmarks. All models were specified as bivariate models featuring the target
variables and the NFCI.

We found that QVAR statistically significantly outperforms VAR-N in about half of
our variables across horizons of 1 to 12 months for forecasting densities or quantiles in
the tails. It works particularly well for the labormarket at all horizons, as well as interest
and exchange rates at shorter horizons. These gains are large, ranging between 10 and
30% over the VAR-N benchmark. Some of these gains appear to be tied to the ability of
QVAR to approximate changes in conditional volatility. Improvements appear stable
over time and are not systematically concentrated in recession periods. Finally, QVAR
almost never performs significantly worse than any of the parametric alternatives. In
this sense, it offers a robust approximation to conditional distributions.

We then extended QVAR to a data-rich environment by introducing PCA or IQR
factors as additional predictors. The resulting QFAVARmodel statistically significantly
improves upon the QVARmodel for forecasting macroeconomic risks in around 13%
of our target variables. Most of the improvements are tied to labor market variables,
especially at long horizons.
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In summary, we find that QVAR and QFAVARmodels are adequate tools for modeling
macroeconomic risk. This is relevant from a macroprudential risk management per-
spective as in Chavleishvili et al. (2021). Extending the present analysis to a simulation
experiment featuring DSGE models with financial frictions in particular would provide
useful complementary evidence.

22



References

Acemoglu, Daron, and Andrew Scott. 1997. “Asymmetric business cycles: Theory and time-series
evidence I.” Journal of Monetary Economics 40: 501–533.

Adams, Patrick A., Tobias Adrian, Nina Boyarchenko, and Domenico Giannone. 2021. “Forecast-
ing macroeconomic risks.” International Journal of Forecasting 37: 1173–1191.

Adrian, Tobias, Nina Boyarchenko, and Domenico Giannone. 2019. “Vulnerable growth.” The
American Economic Review 109: 1263–1289.

Adrian, Tobias, Nina Boyarchenko, and Domenico Giannone. 2021. “Multimodality in Macrofi-
nancial Dynamics.” International Economic Review 62: 861–886.

Adrian, Tobis, andNinaBoyarchenko. 2012. “Intermediary leverage cycles andfinancial stability.”
Aiyagari, S. Rao, andMark Gertler. 1999. ““Overreaction” of Asset Prices in General Equilibrium.”

Review of Economic Dynamics 2: 3–35.
Angrist, Joshua, Victor Chernozhukov, and Iván Fernández-Val. 2006. “Quantile regression under

misspecification, with an application to the U.S. wage structure.” Econometrica 74: 539–563.
Azzalini, Adelchi, and Antonella Capitanio. 2003. “Distributions generated by perturbation of

symmetry with emphasis on amultivariate skew t-distribution.” Journal of the Royal Statistical
Society B 65: 367–389.

Benigno, Pierpaolo, and Gauti B. Eggertsson. 2023. “It’s Baaack: The Surge in Inflation in the
2020s and the Return of the Non-Linear Phillips Curve.”

Bernanke, Ben S. 1983. “Irreversibility, Uncertainty, and Cyclical Investment.” Source: The Quar-
terly Journal of Economics 98: 85–106.

Bernanke, Ben S., Jean Boivin, and Piotr Eliasz. 2005. “Measuring the Effects of Monetary
Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach.” Quarterly Journal of
Economics 120: 387–422.

Boivin, Jean, Marc P. Giannoni, and Dalibor Stevanović. 2020. “Dynamic Effects of Credit Shocks
in a Data-Rich Environment.” Journal of Business and Economic Statistics 38: 272–284.

Boivin, Jean, and Serena Ng. 2005. “Understanding and comparing factor-based forecasts.”
International Journal of Central Banking 1: 117–151.

Bouakez, Hafedh, Foued Chihi, and Michel Normandin. 2014. “Measuring the effects of fiscal
policy.” Journal of Economic Dynamics and Control 47: 123–151.

Bouakez, Hafedh, and Michel Normandin. 2010. “Fluctuations in the foreign exchange market:
How important are monetary policy shocks?” Journal of International Economics 81: 139–153.

Brownlees, Christian, and André B.M. Souza. 2021. “Backtesting global Growth-at-Risk.” Journal
of Monetary Economics 118: 312–330.

Brunnermeier, Markus K., and Yuliy Sannikov. 2014. “A macroeconomic model with a financial
sector.” American Economic Review 104: 379–421.

Caldara, Dario, Danilo Cascaldi-Garcia, Pablo Cuba-Borda, and Francesca Loria. 2021. “Under-
standing Growth-at-Risk: A Markov-Switching Approach.”

Carriero, Andrea, Todd E Clark, and Massimiliano Marcellino. 2020. “Capturing Macroeconomic
Tail Risks with Bayesian Vector Autoregressions.”

Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino. 2021. “Using time-varying volatil-

23



ity for identification in Vector Autoregressions: An application to endogenous uncertainty.”
Journal of Econometrics 225: 47–73.

Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino. 2022. “Specification Choices
in Quantile Regression for Empirical Macroeconomics Specification Choices in Quantile
Regression for Empirical Macroeconomics.”

Chan, Joshua C. C., and Cody Y. L. Hsiao. 2014. Estimation of Stochastic Volatility Models with
Heavy Tails and Serial Dependence. 155–176: John Wiley and Sons Inc..

Chan, Joshua C.C., and Eric Eisenstat. 2018. “Bayesian model comparison for time-varying
parameter VARs with stochastic volatility.” Journal of Applied Econometrics 33: 509–532.

Chavleishvili, Sulkhan., Robert F. Engle, Stephan. Fahr, Manfred. Kremer, Simone. Manganelli,
Bernd. Schwaab, and European Central Bank. 2021. “The risk management approach to
macro-prudential policy..”

Chavleishvili, Sulkhan, and Simone Manganelli. 2021. “Forecasting and Stress Testing with
Quantile Vector Autoregression.”

Chen, Liang, Juan J. Dolado, and Jesús Gonzalo. 2021. “Quantile Factor Models.” Econometrica
89: 875–910.

Chernozhukov, Victor, Iván Iván Fernández-Val, and Tetsuya Kaji. 2017. Extremal Quantile Regres-
sion. 1st ed. 333–362: CRC Press.

Cho, Jin Seo, Tae Hwan Kim, and Yongcheol Shin. 2015. “Quantile cointegration in the autore-
gressive distributed-lag modeling framework.” Journal of Econometrics 188: 281–300.

Cogley, Timothy, and Thomas J. Sargent. 2005. “Drifts and volatilities: Monetary policies and
outcomes in the post WWII US.” Review of Economic Dynamics 8: 262–302.

Diebold, Francis X., and Roberto S. Mariano. 1995. “Comparing predictive accuracy.” Journal of
Business and Economic Statistics 13: 253–263.

Elder, John Robert, and Apostolos Serletis. 2010. “Oil price uncertainty.” Journal of Money, Credit
and Banking 42: 1137–1159.

Figueres, Juan Manuel, and Marek Jarociński. 2020. “Vulnerable growth in the euro area: Mea-
suring the financial conditions.” Economics Letters 191.

Forni, Mario, Luca Gambetti, and Luca Sala. 2021. “Downside and Upside Uncertainty Shocks.”
Giglio, Stefano, Bryan Kelly, and Seth Pruitt. 2016. “Systemic risk and the macroeconomy: An

empirical evaluation.” Journal of Financial Economics 119: 457–471.
Gneiting, Tilmann, and Adrian E. Raftery. 2007. “Strictly proper scoring rules, prediction, and

estimation.” Journal of the American Statistical Association 102: 359–378.
Gneiting, Tilmann, and Roopesh Ranjan. 2011. “Comparing density forecasts using thresholdand

quantile-weighted scoring rules.” Journal of Business and Economic Statistics 29: 411–422.
Goulet Coulombe, Philippe, Maxime Leroux, Dalibor Stevanovic, and Stéphane Surprenant.

2021. “Macroeconomic data transformations matter.” International Journal of Forecasting 37:
1338–1354.

Goulet Coulombe, Philippe, Maxime Leroux, Dalibor Stevanovic, and Stéphane Surprenant.
2022. “How is machine learning useful for macroeconomic forecasting?” Journal of Applied
Econometrics 37: 920–964.

Hallin,Marc, andBas J.M.Werker. 2006. “Comment.” Journal of the American Statistical Association

24



101: 996–998.
Iseringhausen, Martin. 2021. “A Time-varying Skewness Model for Growth-at-Risk.”
Kiley, Michael T. 2022. “Unemployment Risk.” Journal of Money, Credit and Banking 54: 1407–1424.
Kim, Sangjoon, Neil Shephard, and Siddhartha Chib. 1998. “Stochastic Volatility : Likelihood

Inference and Comparison with ARCHModels.” Review of Economic Studies 65: 361–393.
Kipriyanov, Aleksei. 2022. “Comparison of models for Growth-at-Risk Forecasting.”
Koenker, Roger, and Gilbert Bassett. 1978. “Regression Quantiles.” Econometrica 46: 33.
Koenker, Roger, and Zhijie Xiao. 2004. “Unit root quantile autoregression inference.” Journal of

the American Statistical Association 99: 775–787.
Koenker, Roger, and Zhijie Xiao. 2006. “Rejoinder.” Journal of the American Statistical Association

101: 1002–1006.
Loria, Francesca, Christian Matthes, and Donghai Zhang. 2023. “Modeling The Macroeconomy

in Risky Times.”
López-Salido, David, and Francesca Loria. 2020. “Inflation at Risk.”
Lütkepohl, Helmut. 2005. A New Introduction to Multiple Time Series.: 764: Springer-Verlag.
Manzan, Sebastiano. 2015. “Forecasting the Distribution of Economic Variables in a Data-Rich

Environment.” Journal of Business and Economic Statistics 33: 144–164.
Manzan, Sebastiano, and Dawit Zerom. 2013. “Are macroeconomic variables useful for forecast-

ing the distribution of U.S. inflation?” International Journal of Forecasting 29: 469–478.
McCracken, Michael W., and Serena Ng. 2016. “FRED-MD: A Monthly Database for Macroeco-

nomic Research.” Journal of Business and Economic Statistics 34: 574–589.
McDonald, Robert, and Daniel Siegel. 1986. “The Value ofWaiting to Invest.” Source: The Quarterly

Journal of Economics 101: 707–728.
Montes-Rojas, Gabriel. 2021. “Estimating Impulse-Response Functions for Macroeconomic

Models using Directional Quantiles.” Journal of Time Series Econometrics: 1–27.
Newey, Whitney K., and Kenneth D. West. 1987. “A Simple, Positive Semi-Definite, Heteroskedas-

ticity and Autocorrelation Consistent Covariance Matrix.” Econometrica 3: 703–708.
Normandin, Michel, and Louis Phaneuf. 2004. “Monetary policy shocks: Testing identification

conditions under time-varying conditional volatility.” Journal of Monetary Economics 51:
1217–1243.

Plagborg-Moller, Mikkel, Lucrezia Reichlin, Giovanni Ricco, and Thomas Hasenzagl. 2020.
“When Is Growth at Risk?” Brookings Papers on Economic Activity: 167–213.

Primiceri, Giorgio E. 2005. “Time Varying Structural Vector Autoregressions and Monetary
Policy.” Review of Economic Studies 72: 821–852.

Ruzicka, Josef. 2021. “Dynamic Quantile Causal Inference and Forecasting.”: 1–149.
Stock, James H., and Mark W. Watson. 2002a. “Forecasting using principal components from a

large number of predictors.” Journal of the American Statistical Association 97: 1167–1179.
Stock, James H., and Mark W. Watson. 2002b. “Macroeconomic forecasting using diffusion

indexes.” Journal of Business and Economic Statistics 20: 147–162.
White, Halbert, Tae-Hwan Kim, and Simone Manganelli. 2015. “VAR for VaR: Measuring tail

dependence using multivariate regression quantiles.” Journal of Econometrics 187: 169–188.
Xiao, Zhijie. 2009. “Quantile cointegrating regression.” Journal of Econometrics 150: 248–260.

25



Appendix A. Selected Series Results

TABLE A1. Selected Series (All Periods at 3 months ahead)

CRPS (Tails) CRPS (Left) CRPS (Right) QS05 QS95 MSE

QVAR

Output growth 0.968*** 0.998 0.954*** 0.99 0.938* 0.972
Unemployment rate 1.013 1.046 0.983 1.159 0.972 1.039
Inflation rate 0.967* 0.987 0.951*** 1.009 0.948 0.996
Fed. funds rate 0.753*** 0.84*** 0.767*** 0.729** 0.687*** 1.009

VAR-GARCH

Output growth 0.99 1.013 0.977 1.017 0.929 1.005
Unemployment rate 0.975 0.97 0.996 0.854 1.003 0.982
Inflation rate 0.993 1.021* 0.973*** 1.026 0.963 1.002
Fed. funds rate 0.774*** 0.916 0.776*** 0.821 0.561*** 1

VAR-SV

Output growth 0.988 1.032* 0.945*** 1.029 0.901 0.96
Unemployment rate 0.997 0.983 1.018 0.938*** 1.024 1.048
Inflation rate 0.967 1 0.936*** 1.011 0.916 0.974**
Fed. funds rate 0.737*** 0.867** 0.723*** 0.83 0.534*** 0.98

The ratios of mean predictive metric indicate the model beats the VAR-N benchmark when below one.
Statistical significance at the 10% (*), 5% (**) and 1% (***) levels for the Diebold and Mariano (1995) test
using Newey and West (1987) standard errors are also shown. QS refers to the quantile score and CRPS to
the indicated quantile weighted CRPS.
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TABLE A2. Selected Series (All Periods at 6 months ahead)

CRPS (Tails) CRPS (Left) CRPS (Right) QS05 QS95 MSE

QVAR

Output growth 0.968*** 1.005 0.954*** 0.985 0.937** 0.994*
Unemployment rate 1.032 1.057 1 1.214 1.004 1.064
Inflation rate 0.972 0.985 0.962** 0.995 0.976 1.003
Fed. funds rate 0.851** 0.901* 0.83** 0.91 0.839 1.013

VAR-GARCH

Output growth 0.996 1.007 0.991*** 0.991 0.999 1.007*
Unemployment rate 0.981 0.977 1 0.867 1.005 0.978
Inflation rate 0.996 1.01 0.984* 1.031 0.996 1.003
Fed. funds rate 0.889 1.048 0.82*** 1.121 0.581** 1

VAR-SV

Output growth 1.011 1.043*** 0.961*** 1.06* 0.971 0.988**
Unemployment rate 1.02 0.997 1.042 0.984 1.057 1.087
Inflation rate 0.977 0.996 0.948** 1.009 0.954 0.976
Fed. funds rate 0.864 0.965 0.801 1.028 0.694 0.996

The ratios of mean predictive metric indicate the model beats the VAR-N benchmark when below one.
Statistical significance at the 10% (*), 5% (**) and 1% (***) levels for the Diebold and Mariano (1995) test
using Newey and West (1987) standard errors are also shown. QS refers to the quantile score and CRPS to
the indicated quantile weighted CRPS.
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FIGURE A1. Recessions (Unemployment rate, 1 month ahead)

Ratios show the percentage different between QVAR and VAR-N with negative indicating improvements.
NBER recessions are shaded. SE: squared error.
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FIGURE A2. Recessions (Inflation rate, 1 month ahead)

Ratios show the percentage different between QVAR and VAR-N with negative indicating improvements.
NBER recessions are shaded. SE: squared error.
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FIGURE A3. Recessions (Federal funds rate, 6 month ahead)

Ratios show the percentage different between QVAR and VAR-N with negative indicating improvements.
NBER recessions are shaded. SE: squared error.
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FIGURE A4. Recessions (Output growth, 6 month ahead)

Ratios show the percentage different between QVAR and VAR-N with negative indicating improvements.
NBER recessions are shaded. SE: squared error.
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FIGURE A5. Recessions (Unemployment rate, 6 months ahead)

Ratios show the percentage different between QVAR and VAR-N with negative indicating improvements.
NBER recessions are shaded. SE: squared error.
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FIGURE A6. Recessions (Inflation rate, 6 months ahead)

Ratios show the percentage different between QVAR and VAR-N with negative indicating improvements.
NBER recessions are shaded. SE: squared error.

33



Appendix B. Group-Wise Results

FIGURE A7. Recursive average ratios to VAR-N (Tails weighted CRPS, 3 months ahead)

The figure features the median of averages across variables in each group. Groups: (1) Output and income
(16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption, orders and
inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19 variables),
(7) Prices (20 variables) and (8) Stock market (4 variables).

34



FIGURE A8. Recursive average ratios to VAR-N (Tails weighted CRPS, 6 months ahead)

The figure features the median of averages across variables in each group. Groups: (1) Output and income
(16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption, orders and
inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19 variables),
(7) Prices (20 variables) and (8) Stock market (4 variables).
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FIGURE A9. 3 Months ahead quantile weighted CRPS ratios (QVAR to VAR-N)

Groups: (1) Output and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables),
(4) Consumption, orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and
exchange rate (19 variables), (7) Prices (20 variables) and (8) Stock market (4 variables).

FIGURE A10. 6 Months ahead quantile weighted CRPS ratios (QVAR to VAR-N)

Groups: (1) Output and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables),
(4) Consumption, orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and
exchange rate (19 variables), (7) Prices (20 variables) and (8) Stock market (4 variables).
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FIGURE A11. 1 Month ahead quantile score ratios (QVAR to VAR-N)

Groups: (1) Output and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables),
(4) Consumption, orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and
exchange rate (19 variables), (7) Prices (20 variables) and (8) Stock market (4 variables).

FIGURE A12. 3 Months ahead quantile score ratios (QVAR to VAR-N)

Groups: (1) Output and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables),
(4) Consumption, orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and
exchange rate (19 variables), (7) Prices (20 variables) and (8) Stock market (4 variables).
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FIGURE A13. 6 Months ahead quantile score ratios (QVAR to VAR-N)

Groups: (1) Output and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables),
(4) Consumption, orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and
exchange rate (19 variables), (7) Prices (20 variables) and (8) Stock market (4 variables).
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FIGURE A14. QVAR and benchmark model comparison (Square loss)

Winning or losing requires 5% significance in the Diebold and Mariano (1995) test. Groups: (1) Output
and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption,
orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19
variables), (7) Prices (20 variables) and (8) Stock market (4 variables).
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Left weighted CRPS

Right weighted CRPS

FIGURE A15. QVAR and benchmark model comparison in each tail

Winning or losing requires 5% significance in the Diebold and Mariano (1995) test. Groups: (1) Output
and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption,
orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19
variables), (7) Prices (20 variables) and (8) Stock market (4 variables).
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5th quantile score

95th quantile score

FIGURE A16. QVAR and benchmark model comparison in each tail (Quantile score)

Winning or losing requires 5% significance in the Diebold and Mariano (1995) test. Groups: (1) Output
and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption,
orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19
variables), (7) Prices (20 variables) and (8) Stock market (4 variables).
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Appendix C. QFAVAR Results

FIGURE A17. Recursive average ratios to QVAR (Tails weighted CRPS, 6 months ahead)

The figure features the median of averages across variables in each group. Groups: (1) Output and income
(16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption, orders and
inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19 variables),
(7) Prices (20 variables) and (8) Stock market (4 variables).

42



Left weighted CRPS

Right weighted CRPS

FIGURE A18. QFAVAR and QVAR comparison in each tail

Winning or losing requires 5% significance in the Diebold and Mariano (1995) test. Groups: (1) Output
and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption,
orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19
variables), (7) Prices (20 variables) and (8) Stock market (4 variables).
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5th quantile score

95th quantile score

FIGURE A19. QFAVAR and QVAR comparison in each tail (Quantile scores)

Winning or losing requires 5% significance in the Diebold and Mariano (1995) test. Groups: (1) Output
and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption,
orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19
variables), (7) Prices (20 variables) and (8) Stock market (4 variables).
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FIGURE A20. QFAVAR and QVAR comparison (Square loss)

Winning or losing requires 5% significance in the Diebold and Mariano (1995) test. Groups: (1) Output
and income (16 variables), (2) Labor market (29 variables), (3) Housing (10 variables), (4) Consumption,
orders and inventories (5 variables), (5) Money and credit (9 variables), (6) Interest and exchange rate (19
variables), (7) Prices (20 variables) and (8) Stock market (4 variables).

Appendix D. Data Transformation

As in the reference documentation of FRED-MD, the transformation codes are (1) yt,
(2) ∆ yt, (3) ∆2 yt, (4) l n yt, (5) ∆l n yt, (6) ∆2l n yt and (7) yt/ yt–1 – 1.

TABLE A3. Data Transformation

ID Description Used FRED

RPI Real Personal Income 5 5
W875RX1 Real personal income ex transfer receipts 5 5
INDPRO IP Index 5 5
IPFPNSS IP: Final Products and Nonindustrial Supplies 5 5
IPFINAL IP: Final Products (Market Group) 5 5
IPCONGD IP: Consumer Goods 5 5
IPDCONGD IP: Durable Consumer Goods 5 5
IPNCONGD IP: Nondurable Consumer Goods 5 5
IPBUSEQ IP: Business Equipment 5 5
IPMAT IP: Materials 5 5
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TABLE A3. Data Transformation (Continued)

ID Description Used FRED

IPDMAT IP: Durable Materials 5 5
IPNMAT IP: Nondurable Materials 5 5
IPMANSICS IP: Manufacturing (SIC) 5 5
IPB51222s IP: Residential Utilities 5 5
IPFUELS IP: Fuels 5 5
CUMFNS Capacity Utilization: Manufacturing 1 2
HWI Help-Wanted Index for United States 5 2
HWIURATIO Ratio of Help Wanted/No. Unemployed 4 2
CLF16OV Civilian Labor Force 5 5
CE16OV Civilian Employment 5 5
UNRATE Civilian Unemployment Rate 1 2
UEMPMEAN Average Duration of Unemployment (Weeks) 1 2
UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 1 5
UEMP5TO14 Civilians Unemployed for 5-14 Weeks 1 5
UEMP15OV Civilians Unemployed - 15 Weeks & Over 1 5
UEMP15T26 Civilians Unemployed for 15-26 Weeks 1 5
UEMP27OV Civilians Unemployed for 27 Weeks and Over 1 5
CLAIMSx Initial Claims 5 5
PAYEMS All Employees: Total nonfarm 5 5
USGOOD All Employees: Goods-Producing Industries 5 5
CES1021000001 All Employees: Mining and Logging: Mining 5 5
USCONS All Employees: Construction 5 5
MANEMP All Employees: Manufacturing 5 5
DMANEMP All Employees: Durable goods 5 5
NDMANEMP All Employees: Nondurable goods 5 5
SRVPRD All Employees: Service-Providing Industries 5 5
USTPU All Employees: Trade, Transportation & Utilities 5 5
USWTRADE All Employees: Wholesale Trade 5 5
USTRADE All Employees: Retail Trade 5 5
USFIRE All Employees: Financial Activities 5 5
USGOVT All Employees: Government 5 5
CES0600000007 Avg Weekly Hours : Goods-Producing 1 1
AWOTMAN Avg Weekly Overtime Hours : Manufacturing 1 2
AWHMAN Avg Weekly Hours : Manufacturing 1 1
CES0600000008 Avg Hourly Earnings : Goods-Producing 5 6
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TABLE A3. Data Transformation (Continued)

ID Description Used FRED

CES2000000008 Avg Hourly Earnings : Construction 5 6
CES3000000008 Avg Hourly Earnings : Manufacturing 5 6
HOUST Housing Starts: Total New Privately Owned 4 4
HOUSTNE Housing Starts, Northeast 4 4
HOUSTMW Housing Starts, Midwest 4 4
HOUSTS Housing Starts, South 4 4
HOUSTW Housing Starts, West 4 4
PERMIT New Private Housing Permits (SAAR) 4 4
PERMITNE New Private Housing Permits, Northeast (SAAR) 4 4
PERMITMW New Private Housing Permits, Midwest (SAAR) 4 4
PERMITS New Private Housing Permits, South (SAAR) 4 4
PERMITW New Private Housing Permits, West (SAAR) 4 4
DPCERA3M086SBEA Real personal consumption expenditures 5 5
CMRMTSPLx Real Manu. and Trade Industries Sales 5 5
RETAILx Retail and Food Services Sales 5 5
ACOGNO New Orders for Consumer Goods 5 5
AMDMNOx New Orders for Durable Goods 5 5
ANDENOx New Orders for Nondefense Capital Goods 5 5
AMDMUOx Unfilled Orders for Durable Goods 5 5
BUSINVx Total Business Inventories 5 5
ISRATIOx Total Business: Inventories to Sales Ratio 2 2
UMCSENTx Consumer Sentiment Index 2 2
M1SL M1 Money Stock 5 6
M2SL M2 Money Stock 5 6
M2REAL Real M2 Money Stock 5 5
BOGMBASE Monetary Base 5 6
TOTRESNS Total Reserves of Depository Institutions 5 6
NONBORRES Reserves Of Depository Institutions 7 7
BUSLOANS Commercial and Industrial Loans 5 6
REALLN Real Estate Loans at All Commercial Banks 5 6
NONREVSL Total Nonrevolving Credit 5 6
CONSPI Nonrevolving consumer credit to Personal Income 5 2
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 5 6
DTCTHFNM Total Consumer Loans and Leases Outstanding 5 6
INVEST Securities in Bank Credit at All Commercial Banks 5 6
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TABLE A3. Data Transformation (Continued)

ID Description Used FRED

FEDFUNDS Effective Federal Funds Rate 1 2
CP3Mx 3-Month AA Financial Commercial Paper Rate 1 2
TB3MS 3-Month Treasury Bill: 1 2
TB6MS 6-Month Treasury Bill: 1 2
GS1 1-Year Treasury Rate 1 2
GS5 5-Year Treasury Rate 1 2
GS10 10-Year Treasury Rate 1 2
AAA Moody’s Seasoned Aaa Corporate Bond Yield 1 2
BAA Moody’s Seasoned Baa Corporate Bond Yield 1 2
COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1 1
TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1 1
TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1 1
T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 1
T5YFFM 5-Year Treasury C Minus FEDFUNDS 1 1
T10YFFM 10-Year Treasury C Minus FEDFUNDS 1 1
AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1 1
BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1 1
TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index 5 5
EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5 5
EXJPUSx Japan / U.S. Foreign Exchange Rate 5 5
EXUSUKx U.S. / U.K. Foreign Exchange Rate 5 5
EXCAUSx Canada / U.S. Foreign Exchange Rate 5 5
WPSFD49207 PPI: Finished Goods 5 6
WPSFD49502 PPI: Finished Consumer Goods 5 6
WPSID61 PPI: Intermediate Materials 5 6
WPSID62 PPI: Crude Materials 5 6
OILPRICEx Crude Oil, spliced WTI and Cushing 5 6
PPICMM PPI: Metals and metal products: 5 6
CPIAUCSL CPI : All Items 5 6
CPIAPPSL CPI : Apparel 5 6
CPITRNSL CPI : Transportation 5 6
CPIMEDSL CPI : Medical Care 5 6
CUSR0000SAC CPI : Commodities 5 6
CUSR0000SAD CPI : Durables 5 6
CUSR0000SAS CPI : Services 5 6
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TABLE A3. Data Transformation (Continued)

ID Description Used FRED

CPIULFSL CPI : All Items Less Food 5 6
CUSR0000SA0L2 CPI : All items less shelter 5 6
CUSR0000SA0L5 CPI : All items less medical care 5 6
PCEPI Personal Cons. Expend.: Chain Index 5 6
DDURRG3M086SBEA Personal Cons. Exp: Durable goods 5 6
DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 5 6
DSERRG3M086SBEA Personal Cons. Exp: Services 5 6
S&P 500 S&P’s Common Stock Price Index: Composite 5 5
S&P: indust S&P’s Common Stock Price Index: Industrials 5 5
S&P div yield S&P’s Composite Common Stock: Dividend Yield 1 2
S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 1 5
VIXCLSx VIX 1 1
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