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(UQÀM)
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Accuracy gains from machine learning are well documented.
Some recent examples : Kim and Swanson (2018),
Goulet-Coulombe et al. (2019) and Meideiros et al. (2019),
among others ;

Typical data transformations in time series used to remove low
frequency movements may be suboptimal for machine learning
methods ;

Deep neural networks may automate data transformations, but
macroeconomic samples are short and noisy making manual
feature engineering advisable (Kuhn and Johnson, 2019) ;

Moreover, careful feature engineering can encode prior
knowledge and help improve forecasting accuracy.
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Goals :

Propose rotations of original data which helps encode ”time
series friendly” priors into machine learning models ;

And, of course, we seek to compare the performances of
several data transformations and the combinations thereof ;

Note that we focus on the transformations of the
predictors. Throughout, targets are defined as

y (h)
t = 1

h (ln(Yt)− ln(Yt−h))

where h is the forecasting horizon.
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Model : yt+h = g (fZ (Ht)) + εt+h

Objective : min
g∈G

{∑T
t=1

(
yt+h − g (fZ (Ht))2 + pen(g , τ)

)}
Ht is the data, fZ is the feature engineering step, g is the
model and pen is a penalty function with hyperparameter
vector τ . Hence Zt := fZ (Ht) would be the feature matrix.

Forecast error decomposition :
yt+h−ŷt+h = g∗(f ∗Z (Ht))− g(fZ (Ht))︸                             ︷︷                             ︸

approximation error

+ g(Zt)− ĝ(Zt)︸               ︷︷               ︸
estimation error

+et+h.

We focus on how our choice of fZ (transformations or
combinations thereof) impacts forecast accuracy.
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We consider ”older” or more common candidates :

X : Differentiate the data in levels or logarithms.

F : PCA estimates of linear latent factors of X as in Stock
and Watson (2002a,b) and Bai and Ng (2008).

H : (Log-)Level of the series.
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We consider ”newer” or less common candidates :

MARX (Moving average rotation of X) : We use order
p = 1, ...,PM moving averages of each variable in X . This is
motivated by Shiller (1973). The following model :

yt =
p=P∑
p=1

Xt−pβp + εt , εt ∼ N(0, σ2
ε )

βp = βp−1 + up, up ∼ N(0, σ2
uIK ).

This can be estimated by a Ridge regression which may be
parametrized using inputs Z := XC as inputs and where
C = IK ⊗ c with c, a lower triangular matrix of ones.

This transformation implicitly shrinks βp to βp−1.
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MAF (Moving average factors) : Let X̃t,k be the k-th variable
lag matrix defined as

X̃t,k =
[
Xt,k , LXt,k , . . . , LPMAF Xt,k

]
X̃t,k = MtΓ′k + ε̃k,t .

We estimate Mt by PCA and use the same number of factors
for all variables.

This is related to Singular Spectrum Analysis – except that
SSA would use the whole common component instead of
focusing on latent factors.
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Tableau – Summary : Feature Matrices and Models

Transformations Feature Matrix
F Z (F )

t := [Ft , LFt , ..., Lpf Ft ]
X Z (X)

t := [Xt , LXt , ..., LpX Xt ]
MARX Z (MARX)

t :=
[

MARX (1)
1t , ..., MARX (pMARX )

1t , ..., MARX (1)
Kt , ..., MARX (pMARX )

Kt

]
MAF Z (MAF )

t :=
[

MAF (1)
1t , ..., MAF (r1)

1t , ..., MAF (1)
Kt , ..., MAF (rK )

Kt

]
Level Z (Level)

t := [Ht , LHt , ..., LpH Ht ]
Model Functional space
Autoregression (AR) Linear
Factor Model (FM) Linear
Adaptive Lasso (AL) Linear
Elastic Net (EN) Linear
Linear Boosting (LB) Linear
Random Forest (RF) Nonlinear
Boosted Trees (BT) Nonlinear

Several combinations of many of those transformations are
also considered.
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The Horse Race

Direct forecasts

Data : FRED-MD

Targets : Industrial production, non farm employment,
unemployment rate, real personal income, real personal
consumption, retail and food services sales, housing starts, M2
money stock, consumer and producer price index

Horizons : h ∈ [1, 3, 6, 9, 12, 24]

POOS Period : 1980M1-2017M12

Estimation Window : Expanding from 1960M1
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Tableau – Best Specifications in Terms of MSE

INDPRO EMP UNRATE INCOME CONS RETAIL HOUST

H=1 RF��� RF���� LB���� BT��� FM� FM� FM�
H=3 RF� RF��� RF�� RF� FM� AL�� BT���
H=6 AL� RF���� LB� RF�� RF��� AL�� BT��
H=9 LB� LB��� EN� RF�� RF��� AL�� RF�
H=12 RF� LB�� RF�� RF� RF��� RF��� RF�
H=24 RF�� LB��� RF� RF� RF� EN�� RF��

M2 CPI PPI

H=1 BT��� EN� EN�
H=3 BT��� RF� EN���
H=6 BT�� RF� RF�
H=9 BT�� RF� RF�
H=12 BT�� EN� RF�
H=24 RF� AL� RF�

Note : Bullet colors represent data transformations included in the best model
specifications : F , MARX , X , L, MAF .
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The marginal contribution of a transformation to model
performance can be evaluated using a panel regression :

R2
t,h,v ,m = αf + ψt,v ,h + vt,h,v ,m

where

R2
t,h,v ,m := 1− ε2

t,h,v,m

1
T
∑T

t=1

(
y (h)

v,t−ȳ (h)
v

)2

ψt,v ,h are time, variable and horizon fixed effects

εt,h,v ,m is the time t, horizon h, variable v and model m
forecast error

αf is one of αMARX , αMAF , αF associated with the
corresponding transformations. The null hypothesis is αf = 0.
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Main Findings
MARX is especially potent when used in combination with

nonlinear models to forecast measures of real activity. It’s
especially true around recessions Cumulative Squred Errors (Real) .

Factors helps a lot with Random Forest and Boosted Trees,
especially at longer horizons, in line with results in
Goulet-Coulombe et al. (2019).

Random Forests with factors gained a lot of ground for
year-ahead forecasting Cumulative Squred Errors (CPI) .

MAF regressions focus on models which includes X. Results
are more muted, but it seems to help Random Forests and
Linear Boosting for horizons of 6 and 9 months.



Motivation and Goals
Candidate transformations

Horse race setup
Results

Conclusion

Conclusion

At shorter horizons, combining non-standard and standard
data transformations helps reduce RMSE.

MARX is especially potent when used in combination with
nonlinear models to forecast measures of real activity,
especially around recessions.

Factors remain one of the most effective feature engineering
tool available for macroeconomic forecasting, even for
inflation.
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Figure – MAF Average Treatment Effects ((h,v) Subsets)Back
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Figure – F Average Treatment Effects ((h,v) Subsets)Back
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Figure – MARX Average Treatment Effects ((h,v) Subsets)Back
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Random Forest Boosted Trees
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Notes : Giaconomini-Rossi
fluctuation tests for 3
months at 10%. Improve-
ments lie above the upper
line. Transformations :
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F-X-Level , F-MAF,F-X-
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Random Forest Boosted Trees
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Random Forest Boosted Trees
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