Macroeconomic Data Transformation Matters

Philippe Goulet-Coulombe (UPenn), Maxime Leroux (UQÀM), Dalibor Stevanovic (UQÀM) and **Stéphane Surprenant** (UQÀM)

October 2020

Content

- Motivation and Goals
- Candidate transformations
- 3 Horse race setup
- 4 Results
- Conclusion

- Accuracy gains from machine learning are well documented.
 Some recent examples: Kim and Swanson (2018),
 Goulet-Coulombe et al. (2019) and Meideiros et al. (2019),
 among others;
- Typical data transformations in time series used to remove low frequency movements may be suboptimal for machine learning methods;
- Deep neural networks may automate data transformations, but macroeconomic samples are short and noisy making manual feature engineering advisable (Kuhn and Johnson, 2019);
- Moreover, careful feature engineering can encode prior knowledge and help improve forecasting accuracy.

Goals:

- Propose rotations of original data which helps encode "time series friendly" priors into machine learning models;
- And, of course, we seek to compare the performances of several data transformations and the combinations thereof;
- Note that we focus on the transformations of the predictors. Throughout, targets are defined as

$$y_t^{(h)} = \frac{1}{h} (ln(Y_t) - ln(Y_{t-h}))$$

where h is the forecasting horizon.

- Model : $y_{t+h} = g(f_Z(H_t)) + \epsilon_{t+h}$
- **Objective** : $\min_{g \in \mathcal{G}} \left\{ \sum_{t=1}^{T} \left(y_{t+h} g \left(f_{Z}(H_{t}) \right)^{2} + \operatorname{pen}(g, \tau) \right) \right\}$
- H_t is the data, f_Z is the feature engineering step, g is the model and pen is a penalty function with hyperparameter vector τ . Hence $Z_t := f_Z(H_t)$ would be the feature matrix.
- Forecast error decomposition :

$$y_{t+h} - \hat{y}_{t+h} = \underbrace{g^*(f_Z^*(H_t)) - g(f_Z(H_t))}_{\text{approximation error}} + \underbrace{g(Z_t) - \hat{g}(Z_t)}_{\text{estimation error}} + e_{t+h}.$$

 We focus on how our choice of f_Z (transformations or combinations thereof) impacts forecast accuracy.

We consider "older" or more common candidates :

- X : Differentiate the data in levels or logarithms.
- **F**: PCA estimates of linear latent factors of **X** as in Stock and Watson (2002a,b) and Bai and Ng (2008).
- **H** : (Log-)Level of the series.

We consider "newer" or less common candidates :

• MARX (Moving average rotation of X): We use order $p=1,...,P_M$ moving averages of each variable in X. This is motivated by Shiller (1973). The following model:

$$y_t = \sum_{p=1}^{p=P} X_{t-p} \beta_p + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_{\epsilon}^2)$$
$$\beta_p = \beta_{p-1} + u_p, \quad u_p \sim N(0, \sigma_u^2 I_K).$$

This can be estimated by a Ridge regression which may be parametrized using inputs Z := XC as inputs and where $C = I_K \otimes c$ with c, a lower triangular matrix of ones.

• This transformation implicitly shrinks β_p to β_{p-1} .

• MAF (Moving average factors) : Let $\tilde{X}_{t,k}$ be the k-th variable lag matrix defined as

$$\begin{split} \tilde{X}_{t,k} &= \left[X_{t,k}, L X_{t,k}, \dots, L^{P_{MAF}} X_{t,k} \right] \\ \tilde{X}_{t,k} &= M_t \Gamma_k' + \tilde{\epsilon}_{k,t}. \end{split}$$

We estimate M_t by PCA and use the same number of factors for all variables.

 This is related to Singular Spectrum Analysis – except that SSA would use the whole common component instead of focusing on latent factors.

Tableau – Summary : Feature Matrices and Models

Transformations	Feature Matrix
F	
•	$Z_t^{(F)} := [F_t, LF_t,, L^{p_f} F_t]$ $Z_t^{(X)} := [X_t, LX_t,, L^{p_X} X_t]$
X	$Z_t^{(X)} := [X_t, LX_t,, L^{p_X} X_t]$
MARX	$Z_t^{(MARX)} := \left[MARX_{1t}^{(1)},, MARX_{1t}^{(p_{MARX})},, MARX_{Kt}^{(1)},, MARX_{Kt}^{(p_{MARX})} \right]$
MAF	$Z_{t}^{(MAF)} := \left\lceil MAF_{1t}^{(1)},, MAF_{1t}^{(r_{1})},, MAF_{Kt}^{(1)},, MAF_{Kt}^{(r_{K})} \right\rceil$
Level	$Z_t^{(Level)} := [H_t, LH_t,, L^{PH}H_t]$
Model	Functional space
Autoregression (AR)	Linear
Factor Model (FM)	Linear
Adaptive Lasso (AL)	Linear
Elastic Net (EN)	Linear
Linear Boosting (LB)	Linear
Random Forest (RF)	Nonlinear
Boosted Trees (BT)	Nonlinear

 Several combinations of many of those transformations are also considered.

The Horse Race

- Direct forecasts
- Data : FRED-MD
- Targets: Industrial production, non farm employment, unemployment rate, real personal income, real personal consumption, retail and food services sales, housing starts, M2 money stock, consumer and producer price index
- Horizons : $h \in [1, 3, 6, 9, 12, 24]$
- POOS Period : 1980M1-2017M12
- Estimation Window: Expanding from 1960M1

Tableau – Best Specifications in Terms of MSE

	INDPRO	EMP	UNRATE	INCOME	CONS	RETAIL	HOUST
H=1 H=3 H=6 H=9 H=12 H=24	RFO ALO LBO RFO RFO	RFOOD RFOOD LBOOL	LBOOK RFOOR	RFO RFO RFO RFO RFO	FM FM RF RF RF	FM AL AL AL EN EN	FM BT BT RF RF RF
	M2	CPI	PPI				
H=1 H=3 H=6 H=9 H=12 H=24	BT BT BT BT BT RF	ENO RFO RFO ENO ALO	EN• EN• RF• RF• RF•				

Note: Bullet colors represent data transformations included in the best model specifications: *F*, *MARX*, *X*, *L*, *MAF*.

 The marginal contribution of a transformation to model performance can be evaluated using a panel regression :

$$R_{t,h,v,m}^2 = \alpha_f + \psi_{t,v,h} + v_{t,h,v,m}$$

where

$$\bullet \ \ R^2_{t,h,v,m} := 1 - \frac{\epsilon^2_{t,h,v,m}}{\frac{1}{T} \sum_{t=1}^T \left(y_{v,t}^{(h)} - \bar{y}_v^{(h)} \right)^2}$$

- ullet $\psi_{t,v,h}$ are time, variable and horizon fixed effects
- $\epsilon_{t,h,v,m}$ is the time t, horizon h, variable v and model m forecast error
- α_f is one of $\alpha_{MARX}, \alpha_{MAF}, \alpha_F$ associated with the corresponding transformations. The null hypothesis is $\alpha_f = 0$.

Main Findings

- MARX is especially potent when used in combination with nonlinear models to forecast measures of real activity. It's especially true around recessions Cumulative Squred Errors (Real)
- Factors helps a lot with Random Forest and Boosted Trees, especially at longer horizons, in line with results in Goulet-Coulombe et al. (2019).
- Random Forests with factors gained a lot of ground for year-ahead forecasting Cumulative Squred Errors (CPI).
- MAF regressions focus on models which includes X. Results are more muted, but it seems to help Random Forests and Linear Boosting for horizons of 6 and 9 months.

Conclusion

- At shorter horizons, combining non-standard and standard data transformations helps reduce RMSE.
- MARX is especially potent when used in combination with nonlinear models to forecast measures of real activity, especially around recessions.
- Factors remain one of the most effective feature engineering tool available for macroeconomic forecasting, even for inflation.

- 1					
	Adaptive Lasso	Elastic Net	Linear Boosting	Random Forest	Boosted Trees
H=1				***	****
H=3	+ + + + + + + + + + + + + + + + + + +		15-	***	1
9=H	, 				
6=H		# # # # # # # # # # # # # # # # # # #		_	
H=12					
H=24					
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$					

Back FIGURE - MAF Average Treatment Effects ((h,v) Subsets)

FIGURE - F Average Treatment Effects ((h,v) Subsets)

	Adaptive Lasso	Elastic Net	Linear Boosting	Random Forest	Boosted Trees	
H=1				100	4-	
H=3					+	
9=H		H-1-1-1				
H=9					+	
H=12						
H=24						
9	デラグラ a a d a a a a a a a a a a a a a a a a					

FIGURE - MARX Average Treatment Effects ((h,v) Subsets)

FIGURE – Cumulative Squared Errors (Random Forest)

FIGURE - Cumulative Squared Errors (Random Forest)

Motivation and Goals Candidate transformations Horse race setup Results Conclusion

Notes: Giaconomini-Rossi fluctuation tests for 3 months at 10%. Improvements lie above the upper line. Transformations: F,F-X, F-MARX,F-X-MARX,F-X-MARX-Level, F-X-Level, F-MAF,F-X-MAF.

Notes: Giaconomini-Rossi fluctuation tests for 12 months at 10%. Improvements lie above the upper line. Transformations: F,F-X, F-MARX,F-X-MARX,F-X-MARX-Level, F-X-Level, F-MAF,F-X-MAF.

Notes: Giaconomini-Rossi fluctuation tests for 12 months at 10%. Improvements lie above the upper line. Transformations: F,F-X, F-MARX,F-X-MARX,F-X-MARX-Level, F-X-Level, F-MAF,F-X-MAF.